MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. EN AC-45100 Aluminum

EN 1.4938 stainless steel belongs to the iron alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 16 to 17
1.0 to 2.8
Fatigue Strength, MPa 390 to 520
82 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
300 to 360
Tensile Strength: Yield (Proof), MPa 640 to 870
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 30
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
95

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.3
7.9
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 110
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 31 to 37
30 to 35
Strength to Weight: Bending, points 26 to 29
35 to 39
Thermal Diffusivity, mm2/s 8.1
54
Thermal Shock Resistance, points 30 to 35
14 to 16

Alloy Composition

Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 80.5 to 84.8
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0.4 to 0.9
0 to 0.55
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.1
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15