MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. EN AC-46400 Aluminum

EN 1.4938 stainless steel belongs to the iron alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 16 to 17
1.1 to 1.7
Fatigue Strength, MPa 390 to 520
75 to 85
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
170 to 310
Tensile Strength: Yield (Proof), MPa 640 to 870
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
520
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.3
7.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 110
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 31 to 37
18 to 32
Strength to Weight: Bending, points 26 to 29
26 to 38
Thermal Diffusivity, mm2/s 8.1
55
Thermal Shock Resistance, points 30 to 35
7.8 to 14

Alloy Composition

Aluminum (Al), % 0
85.4 to 90.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0.8 to 1.3
Iron (Fe), % 80.5 to 84.8
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0.4 to 0.9
0.15 to 0.55
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.2
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
8.3 to 9.7
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.25