MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. EN AC-47000 Aluminum

EN 1.4938 stainless steel belongs to the iron alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 16 to 17
1.7
Fatigue Strength, MPa 390 to 520
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
180
Tensile Strength: Yield (Proof), MPa 640 to 870
97

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.3
7.7
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 110
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 31 to 37
19
Strength to Weight: Bending, points 26 to 29
27
Thermal Diffusivity, mm2/s 8.1
55
Thermal Shock Resistance, points 30 to 35
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0 to 0.1
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 80.5 to 84.8
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0.4 to 0.9
0.050 to 0.55
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.3
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25