MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. Grade 19 Titanium

EN 1.4938 stainless steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 16 to 17
5.6 to 17
Fatigue Strength, MPa 390 to 520
550 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
47
Shear Strength, MPa 540 to 630
550 to 750
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
890 to 1300
Tensile Strength: Yield (Proof), MPa 640 to 870
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 750
370
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1600
Specific Heat Capacity, J/kg-K 470
520
Thermal Conductivity, W/m-K 30
6.2
Thermal Expansion, µm/m-K 11
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 7.8
5.0
Embodied Carbon, kg CO2/kg material 3.3
47
Embodied Energy, MJ/kg 47
760
Embodied Water, L/kg 110
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
33
Strength to Weight: Axial, points 31 to 37
49 to 72
Strength to Weight: Bending, points 26 to 29
41 to 53
Thermal Diffusivity, mm2/s 8.1
2.4
Thermal Shock Resistance, points 30 to 35
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.080 to 0.15
0 to 0.050
Chromium (Cr), % 11 to 12.5
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 80.5 to 84.8
0 to 0.3
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
3.5 to 4.5
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.020 to 0.040
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0.25 to 0.4
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants