MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. C67400 Bronze

EN 1.4938 stainless steel belongs to the iron alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 17
22 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 540 to 630
310 to 350
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
480 to 610
Tensile Strength: Yield (Proof), MPa 640 to 870
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 750
130
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
26

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
300 to 660
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 37
17 to 22
Strength to Weight: Bending, points 26 to 29
17 to 20
Thermal Diffusivity, mm2/s 8.1
32
Thermal Shock Resistance, points 30 to 35
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 80.5 to 84.8
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.4 to 0.9
2.0 to 3.5
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.25
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5