MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. C71580 Copper-nickel

EN 1.4938 stainless steel belongs to the iron alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 16 to 17
40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
51
Shear Strength, MPa 540 to 630
230
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
330
Tensile Strength: Yield (Proof), MPa 640 to 870
110

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 750
260
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1420
1120
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.3
5.1
Embodied Energy, MJ/kg 47
74
Embodied Water, L/kg 110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
47
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 37
10
Strength to Weight: Bending, points 26 to 29
12
Thermal Diffusivity, mm2/s 8.1
11
Thermal Shock Resistance, points 30 to 35
11

Alloy Composition

Carbon (C), % 0.080 to 0.15
0 to 0.070
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
65.5 to 71
Iron (Fe), % 80.5 to 84.8
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.9
0 to 0.3
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
29 to 33
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.5