MakeItFrom.com
Menu (ESC)

EN 1.4941 Stainless Steel vs. EN-MC21230 Magnesium

EN 1.4941 stainless steel belongs to the iron alloys classification, while EN-MC21230 magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4941 stainless steel and the bottom bar is EN-MC21230 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
63
Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 39
10
Fatigue Strength, MPa 180
99
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
18
Shear Strength, MPa 400
130
Tensile Strength: Ultimate (UTS), MPa 590
220
Tensile Strength: Yield (Proof), MPa 210
140

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Mechanical, °C 940
120
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
1000
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 16
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
63

Otherwise Unclassified Properties

Base Metal Price, % relative 16
12
Density, g/cm3 7.8
1.7
Embodied Carbon, kg CO2/kg material 3.3
23
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 140
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
19
Resilience: Unit (Modulus of Resilience), kJ/m3 110
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
71
Strength to Weight: Axial, points 21
36
Strength to Weight: Bending, points 20
48
Thermal Diffusivity, mm2/s 4.3
43
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
5.5 to 8.5
Boron (B), % 0.0015 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.010
Iron (Fe), % 65.1 to 73.6
0 to 0.0050
Magnesium (Mg), % 0
90.5 to 94.4
Manganese (Mn), % 0 to 2.0
0.1 to 0.6
Nickel (Ni), % 9.0 to 12
0 to 0.0020
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.8
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.010