MakeItFrom.com
Menu (ESC)

EN 1.4941 Stainless Steel vs. SAE-AISI 1536 Steel

Both EN 1.4941 stainless steel and SAE-AISI 1536 steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4941 stainless steel and the bottom bar is SAE-AISI 1536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
14 to 18
Fatigue Strength, MPa 180
240 to 380
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 400
400 to 440
Tensile Strength: Ultimate (UTS), MPa 590
640 to 720
Tensile Strength: Yield (Proof), MPa 210
360 to 600

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 16
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 140
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
93 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 110
340 to 950
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
23 to 25
Strength to Weight: Bending, points 20
21 to 23
Thermal Diffusivity, mm2/s 4.3
14
Thermal Shock Resistance, points 13
20 to 23

Alloy Composition

Boron (B), % 0.0015 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0.3 to 0.37
Chromium (Cr), % 17 to 19
0
Iron (Fe), % 65.1 to 73.6
98 to 98.5
Manganese (Mn), % 0 to 2.0
1.2 to 1.5
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0.4 to 0.8
0