MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. 224.0 Aluminum

EN 1.4945 stainless steel belongs to the iron alloys classification, while 224.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 19 to 34
4.0 to 10
Fatigue Strength, MPa 230 to 350
86 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 640 to 740
380 to 420
Tensile Strength: Yield (Proof), MPa 290 to 550
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 920
220
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1440
550
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
32
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
95

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 5.0
8.3
Embodied Energy, MJ/kg 73
160
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
540 to 770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 22 to 25
35 to 38
Strength to Weight: Bending, points 20 to 22
38 to 41
Thermal Diffusivity, mm2/s 3.7
47
Thermal Shock Resistance, points 14 to 16
17 to 18

Alloy Composition

Aluminum (Al), % 0
93 to 95.2
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
4.5 to 5.5
Iron (Fe), % 57.9 to 65.7
0 to 0.1
Manganese (Mn), % 0 to 1.5
0.2 to 0.5
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0 to 0.060
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.35
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0
0.050 to 0.15
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.1