MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. 5040 Aluminum

EN 1.4945 stainless steel belongs to the iron alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
66 to 74
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 19 to 34
5.7 to 6.8
Fatigue Strength, MPa 230 to 350
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 430 to 460
140 to 150
Tensile Strength: Ultimate (UTS), MPa 640 to 740
240 to 260
Tensile Strength: Yield (Proof), MPa 290 to 550
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 920
190
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1440
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
41
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 5.0
8.3
Embodied Energy, MJ/kg 73
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
260 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22 to 25
24 to 26
Strength to Weight: Bending, points 20 to 22
31 to 32
Thermal Diffusivity, mm2/s 3.7
64
Thermal Shock Resistance, points 14 to 16
10 to 11

Alloy Composition

Aluminum (Al), % 0
95.2 to 98
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0.1 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 57.9 to 65.7
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 1.5
0.9 to 1.4
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0 to 0.3
Sulfur (S), % 0 to 0.015
0
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15