MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. A206.0 Aluminum

EN 1.4945 stainless steel belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 19 to 34
4.2 to 10
Fatigue Strength, MPa 230 to 350
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 430 to 460
260
Tensile Strength: Ultimate (UTS), MPa 640 to 740
390 to 440
Tensile Strength: Yield (Proof), MPa 290 to 550
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1490
670
Melting Onset (Solidus), °C 1440
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
90

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 5.0
8.0
Embodied Energy, MJ/kg 73
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
440 to 1000
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 22 to 25
36 to 41
Strength to Weight: Bending, points 20 to 22
39 to 43
Thermal Diffusivity, mm2/s 3.7
48
Thermal Shock Resistance, points 14 to 16
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 57.9 to 65.7
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.5
0 to 0.2
Nickel (Ni), % 15.5 to 17.5
0 to 0.050
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15