MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. EN 1.4618 Stainless Steel

Both EN 1.4945 stainless steel and EN 1.4618 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 19 to 34
51
Fatigue Strength, MPa 230 to 350
240 to 250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 430 to 460
480 to 500
Tensile Strength: Ultimate (UTS), MPa 640 to 740
680 to 700
Tensile Strength: Yield (Proof), MPa 290 to 550
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 520
410
Maximum Temperature: Mechanical, °C 920
900
Melting Completion (Liquidus), °C 1490
1400
Melting Onset (Solidus), °C 1440
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.7
Embodied Energy, MJ/kg 73
39
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 23
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
160 to 170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 25
24 to 25
Strength to Weight: Bending, points 20 to 22
22 to 23
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 14 to 16
15 to 16

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.1
Chromium (Cr), % 15.5 to 17.5
16.5 to 18.5
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 57.9 to 65.7
62.7 to 72.5
Manganese (Mn), % 0 to 1.5
5.5 to 9.5
Nickel (Ni), % 15.5 to 17.5
4.5 to 5.5
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0 to 0.15
Phosphorus (P), % 0 to 0.035
0 to 0.070
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010
Tungsten (W), % 2.5 to 3.5
0