MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. C46500 Brass

EN 1.4945 stainless steel belongs to the iron alloys classification, while C46500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 19 to 34
18 to 50
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 430 to 460
280 to 380
Tensile Strength: Ultimate (UTS), MPa 640 to 740
380 to 610
Tensile Strength: Yield (Proof), MPa 290 to 550
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 920
120
Melting Completion (Liquidus), °C 1490
900
Melting Onset (Solidus), °C 1440
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
29

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 5.0
2.7
Embodied Energy, MJ/kg 73
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
170 to 1170
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 25
13 to 21
Strength to Weight: Bending, points 20 to 22
15 to 20
Thermal Diffusivity, mm2/s 3.7
38
Thermal Shock Resistance, points 14 to 16
13 to 20

Alloy Composition

Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 57.9 to 65.7
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.0
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4