MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. C51000 Bronze

EN 1.4945 stainless steel belongs to the iron alloys classification, while C51000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 19 to 34
2.7 to 64
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Shear Strength, MPa 430 to 460
250 to 460
Tensile Strength: Ultimate (UTS), MPa 640 to 740
330 to 780
Tensile Strength: Yield (Proof), MPa 290 to 550
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 920
190
Melting Completion (Liquidus), °C 1490
1050
Melting Onset (Solidus), °C 1440
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
77
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
18
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
18

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 5.0
3.1
Embodied Energy, MJ/kg 73
50
Embodied Water, L/kg 150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
75 to 2490
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22 to 25
10 to 25
Strength to Weight: Bending, points 20 to 22
12 to 21
Thermal Diffusivity, mm2/s 3.7
23
Thermal Shock Resistance, points 14 to 16
12 to 28

Alloy Composition

Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 57.9 to 65.7
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0.030 to 0.35
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
4.5 to 5.8
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5