MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. C66300 Brass

EN 1.4945 stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 19 to 34
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 430 to 460
290 to 470
Tensile Strength: Ultimate (UTS), MPa 640 to 740
460 to 810
Tensile Strength: Yield (Proof), MPa 290 to 550
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1490
1050
Melting Onset (Solidus), °C 1440
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
26

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 5.0
2.8
Embodied Energy, MJ/kg 73
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 25
15 to 26
Strength to Weight: Bending, points 20 to 22
15 to 22
Thermal Diffusivity, mm2/s 3.7
32
Thermal Shock Resistance, points 14 to 16
16 to 28

Alloy Composition

Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 57.9 to 65.7
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0 to 0.35
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 3.0
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5