MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. C96700 Copper

EN 1.4945 stainless steel belongs to the iron alloys classification, while C96700 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 19 to 34
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
53
Tensile Strength: Ultimate (UTS), MPa 640 to 740
1210
Tensile Strength: Yield (Proof), MPa 290 to 550
550

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 920
310
Melting Completion (Liquidus), °C 1490
1170
Melting Onset (Solidus), °C 1440
1110
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 30
90
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 5.0
9.5
Embodied Energy, MJ/kg 73
140
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
99
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
1080
Stiffness to Weight: Axial, points 14
8.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 25
38
Strength to Weight: Bending, points 20 to 22
29
Thermal Diffusivity, mm2/s 3.7
8.5
Thermal Shock Resistance, points 14 to 16
40

Alloy Composition

Beryllium (Be), % 0
1.1 to 1.2
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
62.4 to 68.8
Iron (Fe), % 57.9 to 65.7
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Nickel (Ni), % 15.5 to 17.5
29 to 33
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Tungsten (W), % 2.5 to 3.5
0
Zirconium (Zr), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.5