MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. S81921 Stainless Steel

Both EN 1.4945 stainless steel and S81921 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is S81921 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 19 to 34
29
Fatigue Strength, MPa 230 to 350
370
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 430 to 460
460
Tensile Strength: Ultimate (UTS), MPa 640 to 740
710
Tensile Strength: Yield (Proof), MPa 290 to 550
500

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 520
430
Maximum Temperature: Mechanical, °C 920
990
Melting Completion (Liquidus), °C 1490
1430
Melting Onset (Solidus), °C 1440
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
14
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 5.0
2.9
Embodied Energy, MJ/kg 73
41
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 23
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 25
25
Strength to Weight: Bending, points 20 to 22
23
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 14 to 16
20

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 15.5 to 17.5
19 to 22
Iron (Fe), % 57.9 to 65.7
66.7 to 75.9
Manganese (Mn), % 0 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 15.5 to 17.5
2.0 to 4.0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0.14 to 0.2
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 2.5 to 3.5
0