MakeItFrom.com
Menu (ESC)

EN 1.4948 Stainless Steel vs. N08535 Stainless Steel

Both EN 1.4948 stainless steel and N08535 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 65% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4948 stainless steel and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 48
46
Fatigue Strength, MPa 200
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 430
400
Tensile Strength: Ultimate (UTS), MPa 610
570
Tensile Strength: Yield (Proof), MPa 210
240

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
13
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.0
6.3
Embodied Energy, MJ/kg 43
87
Embodied Water, L/kg 140
230

Common Calculations

PREN (Pitting Resistance) 19
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 4.5
3.3
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 19
24 to 27
Copper (Cu), % 0
0 to 1.5
Iron (Fe), % 66.8 to 75
29.4 to 44.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 8.0 to 11
29 to 36.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030