MakeItFrom.com
Menu (ESC)

EN 1.4951 Stainless Steel vs. C86300 Bronze

EN 1.4951 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4951 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
14
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 630
850
Tensile Strength: Yield (Proof), MPa 220
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
920
Melting Onset (Solidus), °C 1360
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
3.0
Embodied Energy, MJ/kg 61
51
Embodied Water, L/kg 190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
30
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 3.9
11
Thermal Shock Resistance, points 14
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 49.1 to 57
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Nickel (Ni), % 19 to 22
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0