MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. AISI 317LMN Stainless Steel

Both EN 1.4958 stainless steel and AISI 317LMN stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
45
Fatigue Strength, MPa 170
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 430
430
Tensile Strength: Ultimate (UTS), MPa 630
620
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 500
420
Maximum Temperature: Mechanical, °C 1090
1020
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.3
4.8
Embodied Energy, MJ/kg 75
65
Embodied Water, L/kg 200
170

Common Calculations

PREN (Pitting Resistance) 21
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
230
Resilience: Unit (Modulus of Resilience), kJ/m3 95
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.2
3.8
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 22
17 to 20
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 41.1 to 50.6
54.4 to 65.4
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 30 to 32.5
13.5 to 17.5
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0.1 to 0.2
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.2 to 0.5
0