MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. ASTM A231 Spring Steel

Both EN 1.4958 stainless steel and ASTM A231 spring steel are iron alloys. They have 48% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is ASTM A231 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
14
Fatigue Strength, MPa 170
1000
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 430
1080
Tensile Strength: Ultimate (UTS), MPa 630
1790
Tensile Strength: Yield (Proof), MPa 190
1570

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1090
420
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
52
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.3
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
2.0
Embodied Energy, MJ/kg 75
28
Embodied Water, L/kg 200
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
64
Strength to Weight: Bending, points 20
42
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 15
53

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0.48 to 0.53
Chromium (Cr), % 19 to 22
0.8 to 1.1
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 41.1 to 50.6
96.7 to 97.7
Manganese (Mn), % 0 to 1.5
0.7 to 0.9
Nickel (Ni), % 30 to 32.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.7
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0.2 to 0.5
0
Vanadium (V), % 0
0.15 to 0.3