MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. ASTM A369 Grade FP9

Both EN 1.4958 stainless steel and ASTM A369 grade FP9 are iron alloys. They have 56% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
20
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 430
300
Tensile Strength: Ultimate (UTS), MPa 630
470
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1090
600
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 30
6.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
2.0
Embodied Energy, MJ/kg 75
28
Embodied Water, L/kg 200
87

Common Calculations

PREN (Pitting Resistance) 21
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
80
Resilience: Unit (Modulus of Resilience), kJ/m3 95
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 3.2
6.9
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0 to 0.15
Chromium (Cr), % 19 to 22
8.0 to 10
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 41.1 to 50.6
87.1 to 90.3
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 30 to 32.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0 to 0.7
0.5 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.2 to 0.5
0