MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. EN 1.4923 Stainless Steel

Both EN 1.4958 stainless steel and EN 1.4923 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
12 to 21
Fatigue Strength, MPa 170
300 to 440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 430
540 to 590
Tensile Strength: Ultimate (UTS), MPa 630
870 to 980
Tensile Strength: Yield (Proof), MPa 190
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 500
380
Maximum Temperature: Mechanical, °C 1090
740
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
24
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
8.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
2.9
Embodied Energy, MJ/kg 75
41
Embodied Water, L/kg 200
100

Common Calculations

PREN (Pitting Resistance) 21
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 95
570 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
31 to 35
Strength to Weight: Bending, points 20
26 to 28
Thermal Diffusivity, mm2/s 3.2
6.5
Thermal Shock Resistance, points 15
30 to 34

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0.18 to 0.24
Chromium (Cr), % 19 to 22
11 to 12.5
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 41.1 to 50.6
83.5 to 87.1
Manganese (Mn), % 0 to 1.5
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 30 to 32.5
0.3 to 0.8
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.2 to 0.5
0
Vanadium (V), % 0
0.25 to 0.35