MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. SAE-AISI 1146 Steel

Both EN 1.4958 stainless steel and SAE-AISI 1146 steel are iron alloys. They have 47% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is SAE-AISI 1146 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
13 to 17
Fatigue Strength, MPa 170
240 to 400
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 430
410 to 440
Tensile Strength: Ultimate (UTS), MPa 630
670 to 730
Tensile Strength: Yield (Proof), MPa 190
360 to 630

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1090
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
51
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.4
Embodied Energy, MJ/kg 75
18
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
93 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 95
340 to 1050
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
24 to 26
Strength to Weight: Bending, points 20
22 to 23
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 15
20 to 22

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0.42 to 0.49
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 41.1 to 50.6
98.3 to 98.8
Manganese (Mn), % 0 to 1.5
0.7 to 1.0
Nickel (Ni), % 30 to 32.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0.080 to 0.13
Titanium (Ti), % 0.2 to 0.5
0