MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. C48200 Brass

EN 1.4958 stainless steel belongs to the iron alloys classification, while C48200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
15 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 430
260 to 300
Tensile Strength: Ultimate (UTS), MPa 630
400 to 500
Tensile Strength: Yield (Proof), MPa 190
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1090
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1350
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.3
2.7
Embodied Energy, MJ/kg 75
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 95
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
14 to 17
Strength to Weight: Bending, points 20
15 to 17
Thermal Diffusivity, mm2/s 3.2
38
Thermal Shock Resistance, points 15
13 to 16

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 41.1 to 50.6
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 32.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0.2 to 0.5
0
Zinc (Zn), % 0
35.5 to 40.1
Residuals, % 0
0 to 0.4