MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. AISI 436 Stainless Steel

Both EN 1.4959 stainless steel and AISI 436 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
25
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 430
320
Tensile Strength: Ultimate (UTS), MPa 630
500
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 510
460
Maximum Temperature: Mechanical, °C 1090
880
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
25
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 76
38
Embodied Water, L/kg 200
120

Common Calculations

PREN (Pitting Resistance) 21
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 96
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.2
6.7
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0 to 0.12
Chromium (Cr), % 19 to 22
16 to 18
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 39.4 to 50.5
77.8 to 83.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 30 to 34
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.25 to 0.65
0