MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. SAE-AISI 4620 Steel

Both EN 1.4959 stainless steel and SAE-AISI 4620 steel are iron alloys. They have 48% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is SAE-AISI 4620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
16 to 27
Fatigue Strength, MPa 170
260 to 360
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 430
320 to 420
Tensile Strength: Ultimate (UTS), MPa 630
490 to 680
Tensile Strength: Yield (Proof), MPa 190
350 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1090
410
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
47
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.2
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.4
1.6
Embodied Energy, MJ/kg 76
22
Embodied Water, L/kg 200
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 96
330 to 800
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
17 to 24
Strength to Weight: Bending, points 20
18 to 22
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 15
15 to 20

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0.17 to 0.22
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 39.4 to 50.5
96.4 to 97.4
Manganese (Mn), % 0 to 1.5
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 30 to 34
1.7 to 2.0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.7
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0.25 to 0.65
0