MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. C19000 Copper

EN 1.4959 stainless steel belongs to the iron alloys classification, while C19000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
2.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 430
170 to 390
Tensile Strength: Ultimate (UTS), MPa 630
260 to 760
Tensile Strength: Yield (Proof), MPa 190
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1090
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1350
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
250
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
61

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 76
42
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 96
89 to 1730
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.2 to 24
Strength to Weight: Bending, points 20
10 to 21
Thermal Diffusivity, mm2/s 3.2
73
Thermal Shock Resistance, points 15
9.3 to 27

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
96.9 to 99
Iron (Fe), % 39.4 to 50.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0.9 to 1.3
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0.15 to 0.35
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.25 to 0.65
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5