MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. C32000 Brass

EN 1.4959 stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
41
Shear Strength, MPa 430
180 to 280
Tensile Strength: Ultimate (UTS), MPa 630
270 to 470
Tensile Strength: Yield (Proof), MPa 190
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1400
1020
Melting Onset (Solidus), °C 1350
990
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
37

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 76
42
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 96
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.8 to 15
Strength to Weight: Bending, points 20
11 to 16
Thermal Diffusivity, mm2/s 3.2
47
Thermal Shock Resistance, points 15
9.5 to 16

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
83.5 to 86.5
Iron (Fe), % 39.4 to 50.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.25 to 0.65
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4