MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. C42200 Brass

EN 1.4959 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 430
210 to 350
Tensile Strength: Ultimate (UTS), MPa 630
300 to 610
Tensile Strength: Yield (Proof), MPa 190
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1350
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
32

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 76
44
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 96
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
9.5 to 19
Strength to Weight: Bending, points 20
11 to 18
Thermal Diffusivity, mm2/s 3.2
39
Thermal Shock Resistance, points 15
10 to 21

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
86 to 89
Iron (Fe), % 39.4 to 50.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.35
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.8 to 1.4
Titanium (Ti), % 0.25 to 0.65
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5