MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. C65500 Bronze

EN 1.4959 stainless steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
4.0 to 70
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 430
260 to 440
Tensile Strength: Ultimate (UTS), MPa 630
360 to 760
Tensile Strength: Yield (Proof), MPa 190
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1090
200
Melting Completion (Liquidus), °C 1400
1030
Melting Onset (Solidus), °C 1350
970
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
36
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 76
42
Embodied Water, L/kg 200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 96
62 to 790
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
12 to 24
Strength to Weight: Bending, points 20
13 to 21
Thermal Diffusivity, mm2/s 3.2
10
Thermal Shock Resistance, points 15
12 to 26

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
91.5 to 96.7
Iron (Fe), % 39.4 to 50.5
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0.5 to 1.3
Nickel (Ni), % 30 to 34
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.7
2.8 to 3.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.25 to 0.65
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5