MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. C99600 Bronze

EN 1.4959 stainless steel belongs to the iron alloys classification, while C99600 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 40
27 to 34
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
56
Tensile Strength: Ultimate (UTS), MPa 630
560
Tensile Strength: Yield (Proof), MPa 190
250 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1090
200
Melting Completion (Liquidus), °C 1400
1100
Melting Onset (Solidus), °C 1350
1050
Specific Heat Capacity, J/kg-K 480
440
Thermal Expansion, µm/m-K 15
19

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 5.4
3.2
Embodied Energy, MJ/kg 76
51
Embodied Water, L/kg 200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 96
210 to 310
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
19
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
1.0 to 2.8
Carbon (C), % 0.050 to 0.1
0 to 0.050
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0 to 0.5
0 to 0.2
Copper (Cu), % 0 to 0.5
50.8 to 60
Iron (Fe), % 39.4 to 50.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
39 to 45
Nickel (Ni), % 30 to 34
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.25 to 0.65
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.3