MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. S32520 Stainless Steel

Both EN 1.4959 stainless steel and S32520 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
28
Fatigue Strength, MPa 170
460
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 430
560
Tensile Strength: Ultimate (UTS), MPa 630
860
Tensile Strength: Yield (Proof), MPa 190
630

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 510
450
Maximum Temperature: Mechanical, °C 1090
1100
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1350
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
20
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.4
4.0
Embodied Energy, MJ/kg 76
55
Embodied Water, L/kg 200
180

Common Calculations

PREN (Pitting Resistance) 21
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
220
Resilience: Unit (Modulus of Resilience), kJ/m3 96
960
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
31
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 3.2
4.1
Thermal Shock Resistance, points 15
24

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 19 to 22
24 to 26
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0.5 to 2.0
Iron (Fe), % 39.4 to 50.5
57.3 to 66.8
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 30 to 34
5.5 to 8.0
Nitrogen (N), % 0 to 0.030
0.2 to 0.35
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.7
0 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0.25 to 0.65
0