MakeItFrom.com
Menu (ESC)

EN 1.4961 Stainless Steel vs. AWS E120C-K4

Both EN 1.4961 stainless steel and AWS E120C-K4 are iron alloys. They have 72% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4961 stainless steel and the bottom bar is AWS E120C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 610
950
Tensile Strength: Yield (Proof), MPa 220
840

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
41
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 21
3.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.7
Embodied Energy, MJ/kg 57
23
Embodied Water, L/kg 140
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
34
Strength to Weight: Bending, points 20
27
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 14
28

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.15
Chromium (Cr), % 15 to 17
0.15 to 0.65
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 65.6 to 72.3
92.1 to 98.4
Manganese (Mn), % 0 to 1.5
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 12 to 14
0.5 to 2.5
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5