MakeItFrom.com
Menu (ESC)

EN 1.4961 Stainless Steel vs. EN 1.0451 Steel

Both EN 1.4961 stainless steel and EN 1.0451 steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4961 stainless steel and the bottom bar is EN 1.0451 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
27
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 420
270
Tensile Strength: Ultimate (UTS), MPa 610
420
Tensile Strength: Yield (Proof), MPa 220
240

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.0
1.5
Embodied Energy, MJ/kg 57
19
Embodied Water, L/kg 140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
98
Resilience: Unit (Modulus of Resilience), kJ/m3 120
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.040 to 0.1
0 to 0.15
Chromium (Cr), % 15 to 17
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 65.6 to 72.3
97.2 to 99.58
Manganese (Mn), % 0 to 1.5
0.4 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 12 to 14
0 to 0.3
Niobium (Nb), % 0.4 to 1.2
0 to 0.010
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020