MakeItFrom.com
Menu (ESC)

EN 1.4961 Stainless Steel vs. C18400 Copper

EN 1.4961 stainless steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4961 stainless steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
13 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 420
190 to 310
Tensile Strength: Ultimate (UTS), MPa 610
270 to 490
Tensile Strength: Yield (Proof), MPa 220
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
320
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
80
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
81

Otherwise Unclassified Properties

Base Metal Price, % relative 21
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.0
2.6
Embodied Energy, MJ/kg 57
41
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
54 to 980
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
8.5 to 15
Strength to Weight: Bending, points 20
10 to 16
Thermal Diffusivity, mm2/s 4.3
94
Thermal Shock Resistance, points 14
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15 to 17
0.4 to 1.2
Copper (Cu), % 0
97.2 to 99.6
Iron (Fe), % 65.6 to 72.3
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 12 to 14
0
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5