MakeItFrom.com
Menu (ESC)

EN 1.4961 Stainless Steel vs. C82000 Copper

EN 1.4961 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4961 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 610
350 to 690
Tensile Strength: Yield (Proof), MPa 220
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 890
220
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1390
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
260
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
46

Otherwise Unclassified Properties

Base Metal Price, % relative 21
60
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.0
5.0
Embodied Energy, MJ/kg 57
77
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 120
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
11 to 22
Strength to Weight: Bending, points 20
12 to 20
Thermal Diffusivity, mm2/s 4.3
76
Thermal Shock Resistance, points 14
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15 to 17
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 65.6 to 72.3
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 12 to 14
0 to 0.2
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5