MakeItFrom.com
Menu (ESC)

EN 1.4961 Stainless Steel vs. C95820 Bronze

EN 1.4961 stainless steel belongs to the iron alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4961 stainless steel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 610
730
Tensile Strength: Yield (Proof), MPa 220
310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 890
230
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
38
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 21
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.0
3.5
Embodied Energy, MJ/kg 57
56
Embodied Water, L/kg 140
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
86
Resilience: Unit (Modulus of Resilience), kJ/m3 120
400
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 14
25

Alloy Composition

Aluminum (Al), % 0
9.0 to 10
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
77.5 to 82.5
Iron (Fe), % 65.6 to 72.3
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0 to 1.5
Nickel (Ni), % 12 to 14
4.5 to 5.8
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8