MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. 2030 Aluminum

EN 1.4962 stainless steel belongs to the iron alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 22 to 34
5.6 to 8.0
Fatigue Strength, MPa 210 to 330
91 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 420 to 440
220 to 250
Tensile Strength: Ultimate (UTS), MPa 630 to 690
370 to 420
Tensile Strength: Yield (Proof), MPa 260 to 490
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1440
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.1
3.1
Embodied Carbon, kg CO2/kg material 4.1
8.0
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 21 to 24
33 to 38
Strength to Weight: Bending, points 20 to 21
37 to 40
Thermal Diffusivity, mm2/s 3.7
50
Thermal Shock Resistance, points 14 to 16
16 to 19

Alloy Composition

Aluminum (Al), % 0
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0 to 0.1
Copper (Cu), % 0
3.3 to 4.5
Iron (Fe), % 62.1 to 69
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0 to 1.5
0.2 to 1.0
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.7
0 to 0.2
Tungsten (W), % 2.5 to 3.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3