MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. 2219 Aluminum

EN 1.4962 stainless steel belongs to the iron alloys classification, while 2219 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is 2219 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 22 to 34
2.2 to 20
Fatigue Strength, MPa 210 to 330
90 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 420 to 440
110 to 280
Tensile Strength: Ultimate (UTS), MPa 630 to 690
180 to 480
Tensile Strength: Yield (Proof), MPa 260 to 490
88 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 910
230
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1440
540
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 14
110 to 170
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
28 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
81 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.1
3.1
Embodied Carbon, kg CO2/kg material 4.1
8.2
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 150
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
9.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
54 to 1060
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 21 to 24
16 to 43
Strength to Weight: Bending, points 20 to 21
23 to 44
Thermal Diffusivity, mm2/s 3.7
42 to 63
Thermal Shock Resistance, points 14 to 16
8.2 to 22

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.8
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
5.8 to 6.8
Iron (Fe), % 62.1 to 69
0 to 0.3
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0.2 to 0.4
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.7
0.020 to 0.1
Tungsten (W), % 2.5 to 3.0
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15