MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. 5049 Aluminum

EN 1.4962 stainless steel belongs to the iron alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 22 to 34
2.0 to 18
Fatigue Strength, MPa 210 to 330
79 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 420 to 440
130 to 190
Tensile Strength: Ultimate (UTS), MPa 630 to 690
210 to 330
Tensile Strength: Yield (Proof), MPa 260 to 490
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1440
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.5
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
59 to 570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 24
22 to 34
Strength to Weight: Bending, points 20 to 21
29 to 39
Thermal Diffusivity, mm2/s 3.7
56
Thermal Shock Resistance, points 14 to 16
9.3 to 15

Alloy Composition

Aluminum (Al), % 0
94.7 to 97.9
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 62.1 to 69
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0 to 1.5
0.5 to 1.1
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.7
0 to 0.1
Tungsten (W), % 2.5 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15