MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. AISI 317LMN Stainless Steel

Both EN 1.4962 stainless steel and AISI 317LMN stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22 to 34
45
Fatigue Strength, MPa 210 to 330
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 420 to 440
430
Tensile Strength: Ultimate (UTS), MPa 630 to 690
620
Tensile Strength: Yield (Proof), MPa 260 to 490
270

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 510
420
Maximum Temperature: Mechanical, °C 910
1020
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 4.1
4.8
Embodied Energy, MJ/kg 59
65
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 21
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
230
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 24
22
Strength to Weight: Bending, points 20 to 21
20
Thermal Diffusivity, mm2/s 3.7
3.8
Thermal Shock Resistance, points 14 to 16
14

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0 to 0.030
Chromium (Cr), % 15.5 to 17.5
17 to 20
Iron (Fe), % 62.1 to 69
54.4 to 65.4
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 12.5 to 14.5
13.5 to 17.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0