MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. ASTM A356 Grade 6

Both EN 1.4962 stainless steel and ASTM A356 grade 6 are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is ASTM A356 grade 6.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22 to 34
25
Fatigue Strength, MPa 210 to 330
250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 630 to 690
550
Tensile Strength: Yield (Proof), MPa 260 to 490
350

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 910
430
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
41
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.6
Embodied Energy, MJ/kg 59
21
Embodied Water, L/kg 150
53

Common Calculations

PREN (Pitting Resistance) 21
3.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 24
20
Strength to Weight: Bending, points 20 to 21
19
Thermal Diffusivity, mm2/s 3.7
11
Thermal Shock Resistance, points 14 to 16
16

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0 to 0.2
Chromium (Cr), % 15.5 to 17.5
1.0 to 1.5
Iron (Fe), % 62.1 to 69
96.2 to 98.1
Manganese (Mn), % 0 to 1.5
0.5 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0