MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. EN 1.4424 Stainless Steel

Both EN 1.4962 stainless steel and EN 1.4424 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22 to 34
28
Fatigue Strength, MPa 210 to 330
350 to 370
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 420 to 440
520
Tensile Strength: Ultimate (UTS), MPa 630 to 690
800
Tensile Strength: Yield (Proof), MPa 260 to 490
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 510
420
Maximum Temperature: Mechanical, °C 910
960
Melting Completion (Liquidus), °C 1480
1430
Melting Onset (Solidus), °C 1440
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
13
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 4.1
3.4
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 21
29
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
580 to 640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 24
29
Strength to Weight: Bending, points 20 to 21
25
Thermal Diffusivity, mm2/s 3.7
3.5
Thermal Shock Resistance, points 14 to 16
23

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0 to 0.030
Chromium (Cr), % 15.5 to 17.5
18 to 19
Iron (Fe), % 62.1 to 69
68.6 to 72.4
Manganese (Mn), % 0 to 1.5
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 12.5 to 14.5
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.5
1.4 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0