MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. EN AC-43000 Aluminum

EN 1.4962 stainless steel belongs to the iron alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
60 to 94
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 22 to 34
1.1 to 2.5
Fatigue Strength, MPa 210 to 330
68 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 630 to 690
180 to 270
Tensile Strength: Yield (Proof), MPa 260 to 490
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
540
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1480
600
Melting Onset (Solidus), °C 1440
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 4.1
7.8
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
66 to 360
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 21 to 24
20 to 29
Strength to Weight: Bending, points 20 to 21
28 to 36
Thermal Diffusivity, mm2/s 3.7
60
Thermal Shock Resistance, points 14 to 16
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
87 to 90.8
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 62.1 to 69
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.5
0 to 0.45
Nickel (Ni), % 12.5 to 14.5
0 to 0.050
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
9.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.4 to 0.7
0 to 0.15
Tungsten (W), % 2.5 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15