MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. SAE-AISI 4028 Steel

Both EN 1.4962 stainless steel and SAE-AISI 4028 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is SAE-AISI 4028 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
150 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22 to 34
14 to 23
Fatigue Strength, MPa 210 to 330
180 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 420 to 440
310 to 380
Tensile Strength: Ultimate (UTS), MPa 630 to 690
490 to 630
Tensile Strength: Yield (Proof), MPa 260 to 490
260 to 520

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 910
400
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.1
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.5
Embodied Energy, MJ/kg 59
19
Embodied Water, L/kg 150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
81 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
180 to 720
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 24
17 to 22
Strength to Weight: Bending, points 20 to 21
18 to 21
Thermal Diffusivity, mm2/s 3.7
13
Thermal Shock Resistance, points 14 to 16
16 to 20

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0.25 to 0.3
Chromium (Cr), % 15.5 to 17.5
0
Iron (Fe), % 62.1 to 69
98.1 to 98.7
Manganese (Mn), % 0 to 1.5
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0.035 to 0.050
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0