EN 1.4962 Stainless Steel vs. SAE-AISI 8630 Steel
Both EN 1.4962 stainless steel and SAE-AISI 8630 steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is SAE-AISI 8630 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 to 210 | |
160 to 200 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 22 to 34 | |
12 to 24 |
Fatigue Strength, MPa | 210 to 330 | |
260 to 350 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
73 |
Shear Strength, MPa | 420 to 440 | |
340 to 410 |
Tensile Strength: Ultimate (UTS), MPa | 630 to 690 | |
540 to 680 |
Tensile Strength: Yield (Proof), MPa | 260 to 490 | |
360 to 560 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 910 | |
410 |
Melting Completion (Liquidus), °C | 1480 | |
1460 |
Melting Onset (Solidus), °C | 1440 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 14 | |
39 |
Thermal Expansion, µm/m-K | 16 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.3 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.6 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 23 | |
2.6 |
Density, g/cm3 | 8.1 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 4.1 | |
1.5 |
Embodied Energy, MJ/kg | 59 | |
20 |
Embodied Water, L/kg | 150 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 170 | |
78 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 170 to 610 | |
340 to 840 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 21 to 24 | |
19 to 24 |
Strength to Weight: Bending, points | 20 to 21 | |
19 to 22 |
Thermal Diffusivity, mm2/s | 3.7 | |
10 |
Thermal Shock Resistance, points | 14 to 16 | |
18 to 23 |
Alloy Composition
Boron (B), % | 0.0015 to 0.0060 | |
0 |
Carbon (C), % | 0.070 to 0.15 | |
0.28 to 0.33 |
Chromium (Cr), % | 15.5 to 17.5 | |
0.4 to 0.6 |
Iron (Fe), % | 62.1 to 69 | |
96.8 to 97.9 |
Manganese (Mn), % | 0 to 1.5 | |
0.7 to 0.9 |
Molybdenum (Mo), % | 0 | |
0.15 to 0.25 |
Nickel (Ni), % | 12.5 to 14.5 | |
0.4 to 0.7 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.5 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.040 |
Titanium (Ti), % | 0.4 to 0.7 | |
0 |
Tungsten (W), % | 2.5 to 3.0 | |
0 |