MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. C26200 Brass

EN 1.4962 stainless steel belongs to the iron alloys classification, while C26200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is C26200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 34
3.0 to 180
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 420 to 440
230 to 390
Tensile Strength: Ultimate (UTS), MPa 630 to 690
330 to 770
Tensile Strength: Yield (Proof), MPa 260 to 490
110 to 490

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 910
140
Melting Completion (Liquidus), °C 1480
950
Melting Onset (Solidus), °C 1440
920
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
31

Otherwise Unclassified Properties

Base Metal Price, % relative 23
25
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 4.1
2.7
Embodied Energy, MJ/kg 59
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
19 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
62 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 24
11 to 26
Strength to Weight: Bending, points 20 to 21
13 to 23
Thermal Diffusivity, mm2/s 3.7
38
Thermal Shock Resistance, points 14 to 16
11 to 26

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
67 to 70
Iron (Fe), % 62.1 to 69
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0
Zinc (Zn), % 0
29.6 to 33
Residuals, % 0
0 to 0.3