MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. C62500 Bronze

EN 1.4962 stainless steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 34
1.0
Fatigue Strength, MPa 210 to 330
460
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Shear Strength, MPa 420 to 440
410
Tensile Strength: Ultimate (UTS), MPa 630 to 690
690
Tensile Strength: Yield (Proof), MPa 260 to 490
410

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 910
230
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1440
1050
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 14
47
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
26
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 4.1
3.3
Embodied Energy, MJ/kg 59
55
Embodied Water, L/kg 150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
750
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21 to 24
24
Strength to Weight: Bending, points 20 to 21
22
Thermal Diffusivity, mm2/s 3.7
13
Thermal Shock Resistance, points 14 to 16
24

Alloy Composition

Aluminum (Al), % 0
12.5 to 13.5
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 62.1 to 69
3.5 to 5.5
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 12.5 to 14.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0
Residuals, % 0
0 to 0.5