MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. C84500 Brass

EN 1.4962 stainless steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 22 to 34
28
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 630 to 690
240
Tensile Strength: Yield (Proof), MPa 260 to 490
97

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 910
150
Melting Completion (Liquidus), °C 1480
980
Melting Onset (Solidus), °C 1440
840
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 14
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
28
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 4.1
2.9
Embodied Energy, MJ/kg 59
47
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
54
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21 to 24
7.7
Strength to Weight: Bending, points 20 to 21
9.8
Thermal Diffusivity, mm2/s 3.7
23
Thermal Shock Resistance, points 14 to 16
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 62.1 to 69
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 12.5 to 14.5
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7